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Abstract

Background: Glial dysfunction has been purported to be important to the pathophysiology of bipolar illness.
However, manic behavior has not been previously demonstrated to result as a consequence of glial pathology.
The aim of the current study was to assess the behaviors of the glial-specific sodium pump alpha2 subunit (ATP1A2)
knockout (KO) heterozygote mice to determine if a glial-specific abnormality can produce manic-like behavior.

Methods: Activity and behavior of hemideficient sodium pump alpha2 KO mice and wild-type (WT) littermates
(C57BL6/Black Swiss background) were examined at baseline, following forced swimming stress and restraint stress
and after 3 days of sleep deprivation.

Results and discussion: At baseline, the 24-h total distance traveled and center time were significantly greater in
KO mice, but there were no behavioral differences with sweet water preference or with inactivity time during
forced swim or tail suspension tests. After restraint stress or forced swimming stress, there were no differences in
activity. Three days of sleep deprivation utilizing the inverted flowerpot method induced a significant increase in
the distance traveled by the KO versus WT mice in the 30-min observation period (p=0.016). Lithium pretreatment
has no effect on WT animals versus their baseline but significantly reduces hyperactivity induced by sleep
deprivation in KO. Knockout of the glial-specific alpha2 isoform is associated with some manic behaviors compared
to WT littermates, suggesting that glial dysfunction could be associated with mania.
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Background
Glial dysfunction has been purported to be important to
the pathophysiology of bipolar illness (e.g., Mitterauer
2004, 2011). A multitude of studies have found reduced
glial number (Ongür et al. 1998; Rajkowska 2000;
Rajkowska et al. 2001; Uranova et al. 2004), reduced glial
size (Brauch et al. 2006), and aberrant glial function
(Tkachev et al. 2003; Ongür et al. 2008) in bipolar illness
compared to non-bipolar controls and involvement of
glia in the therapeutic action of effective mood stabi-
lizers (Wang et al. 2012). While indeed there have been
demonstrations of glial pathology in bipolar illness, func-
tional or behavioral consequences of that pathology have
not been previously demonstrated.
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In designing a demonstration of glial dysfunction and
consequent behavior, it is important to keep in mind the
abnormalities that are known to occur in bipolar
patients. It has been previously demonstrated that the
alpha2 isoform of the sodium pump (sodium and
potassium activated adenosine triphosphatase, or Na,K-
ATPase) is reduced in postmortem temporal cortical
tissue of bipolar subjects compared to non-bipolar con-
trols (Rose et al. 1998). This is important since the
alpha2 subunit is expressed exclusively in glia with the
central nervous system (Urayama et al. 1989; Juhaszova
and Blaustein 1997a). Consequently, by mimicking the
deficiency of the alpha2 subunit in mice, one could sim-
ultaneously create a glial abnormality that is known to
occur in humans with bipolar disorder.
It has been previously demonstrated that intra-

cerebroventricular (ICV) administration of the specific
sodium pump inhibitor, ouabain, may model bipolar
disorder (Ruktanonchai et al. 1998; Decker et al. 2000;
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El-Mallakh et al. 2003). However, this procedure would
be expected to inhibit both neuronal alpha3 and glial
alpha2 subunits. The preferred approach would be to
genetically model the alpha2 deficit observed in the
brains of humans with bipolar disorder by examining
the behavior in hemideficient alpha2 (ATP1A2) knockout
mice (Moseley et al. 2007).
Methods
Animals
Na,K-ATPase alpha2 knockout (KO) mice were gener-
ated at the University of Cincinnati and described by
James et al. (1999). KO mice were created upon a Black
Swiss background. Homozygous mice die upon birth,
but heterozygotes survive and appear grossly normal.
Heterozygote mice express about half as much of the
alpha2 subunit of the sodium pump as wild-type (WT)
littermates. To identify genotypes, PCR genotyping was
performed at 4 weeks of age by genomic DNA extracted
from the tails. Young adult male and female heterozy-
gote and wild-type littermates were used for the study.
All female mice were studied during their estrus period
(determined by examination of vaginal smears) (Cooper
et al. 1993). Animals were maintained in a 12:12 light/
dark cycle and given ad libitum food and water. All be-
havioral testing was done during the light hours of the
animals. All experimental procedures were approved by
the University of Louisville's Institutional Animal Care
and Use Committee (IACUC).
Experimental procedures
Stressors
For the experiments, we investigated motoric activity
after a forced swimming stress, a restraint stress, and
sleep deprivation. Swim stress was accomplished by pla-
cing the mice in 20-cm-deep warm (28°C) water that
they are forced to swim continuously for 3 h each day
for 3 days in a row. The mice were continuously ob-
served throughout the swim period. Twenty-five animals
in each group were studied. Restraint stress was accom-
plished by placing the animal in a ventilated plastic
chamber in which the mouse could not move to any sig-
nificant degree, for 6 h. Ten animals in each group were
studied. Sleep deprivation for 3 days utilized the inverted
flowerpot method. Briefly, animals were placed on a
small island (3.5 cm diameter) in a pool of water for the
entire 72 h period and replaced onto the island when-
ever they fell into the water. This technique deprives an-
imals of rapid eye movement (REM) sleep (Kitka et al.
2009). Fourteen animals in each group were studied.
The effect of lithium was examined by feeding rodent

chow containing 1.994 g lithium/kg of food (Harlan
Tekiad, Madison, WI, USA) for 7 days before the stress.
Experimental procedures
Behavior tests
Locomotor activity was performed in a 41.5 cm × 41.5 cm
automated, infrared activity monitors (Digiscan, Omnitech
Electronics, Columbus, OH, USA). Horizontal activity,
total distance, movement time, rest time, vertical activity,
margin time, and center time were recorded. The baseline
activities were measured for 24 h. Since it is known that
sleep deprivation induces a transient motoric hyperactivity
previously described as manic-like (Gessa et al. 1995), the
activities after previous described stresses were measured
for 30 min.
Inactivity time was measured in mice placed in a tank

of 25 cm diameter in 20-cm-deep warm water (28°C) for
6 min (Porsolt et al. 1977) and in mice suspended by
their tail for 6 min (Steru et al. 1985).
Sweet water preference was carried out by giving the

mice the free choice between sodium saccharin-sweetened
(Sigma, St. Louis, MO, USA) water (0.1%, 0.5%, or 1%)
and tap water supplied in standard drinking bottles in
their home cage. The amount of water used over 6-day
period was quantified (Hayward et al. 2002).
Serum lithium levels were measured by lithium-sensitive

electrode 10 to 12 h after the removal of lithium-
containing food.
Experimental procedures
Data analysis
A two-tailed t test was used to evaluate horizontal
movement after forced swimming and restraint stress.
ANOVA with a post hoc Fisher PLSD was used to
analyze all the measures after the sleep deprivation.
Results
Lithium feeding over a period of 1 week resulted in mean
plasma lithium levels of 1.0 mM (range 0.74 to 1.74 mM).
KO mice had significantly elevated baseline total dis-

tance and center time of 24 h in the activity monitor
(Figures 1 and 2). Total distance is a measure of explora-
tory activity. Center time is a measure of risk taking.
Horizontal activity, vertical activity, movement time, and
rest time were not different. Lithium was associated with
normalization of center time in KO animals (Figure 2)
and an increase in WT mice but not KO mice (Figures 1
and 2). Horizontal activity was not different at baseline;
however, lithium was associated with an increase in
horizontal activity in WT mice which did not occur in
the KO mice (Figure 3).
After 3 days of 3 h/day of forced swimming, total dis-

tance, horizontal activity, and center time were not differ-
ent in the KO mice compared to their WT littermates.
Similarly, 6 h of restraint stress also had no effect on total
distance, horizontal activity, and center time.
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After 72 h of sleep deprivation utilizing the inverted
flowerpot method, total distance traveled and horizontal
activity were significantly increased in KO mice
(Figures 4 and 5). Lithium lowered postsleep deprivation
activity only in KO mice (Figures 4 and 5).
Other measures such as sweet water preference,

inactivity time with forced swim test, and tail suspension
test were not different at baseline between the KO and
WT.
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Figure 2 Baseline 24 h center time (sec) before and after
lithium treatment. In alpha2 hemideficient KO and WT littermates
(P < 0.01, t = 6.288, n = 16). Center time was significantly greater in
KO at baseline and normalized after lithium treatment relative to WT
mice (P > 0.05, t = 0.574, n = 16).
Discussion
This is the first demonstration that abnormalities associ-
ated with glial dysfunction can produce behavioral
abnormalities consistent with mania. Na,K-ATPase
alpha2 KO mice exhibited some increased exploratory
activity (total distance travelled, Figure 1) and risk taking
behavior (center time, Figure 2) at baseline. Additionally,
REM sleep deprivation of KO mice was associated with
an increase in walking activity (Figure 4) and horizontal
activity (Figure 5), resembling the increase in goal-
directed activity that occurs with mania after sleep
deprivation in humans with bipolar illness. All of the ob-
served differences in the KO mice were normalized with
lithium treatment, i.e., after lithium treatment, KO mice
resembled the untreated WT animals (Figures 1, 2, 3, 4,
and 5), as frequently occurs in humans with bipolar
disorder. These changes suggest that hemi-expression of
the alpha2 subunit of the Na,K-ATPase in mice (James
et al. 1999) - similar to what occurs in the brain of human
bipolar (Rose et al. 1998) - produces behavior in mice that
is compatible with mania.
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Figure 1 Baseline 24 h total distance traveled (cm) before and
after lithium treatment. In alpha2 hemideficient KO and WT
littermates (P < 0.05, t = 3.672, n = 16). Total distance was significantly
greater in KO at baseline and significantly less after lithium treatment
relative to WT mice (P < 0.05, t = 2.901, n = 16).
In rodents, the alpha2 isoform accounts for about 20%
of all alpha subunit expression while the ubiquitous
alpha1 subunit accounts for the remaining 80%
(Golovina et al. 2003a). The hemideficient KO mice ex-
press approximately half as many pump units in the
membrane as WT littermates (Golovina et al. 2003a), which
is very similar to the findings in the postmortem temporal
cortex of bipolar disorder patients (Rose et al. 1998).
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Figure 3 Baseline 24 h horizontal activity. The baseline 24-h
horizontal activity (number of beam interruptions) was not different
between alpha2 hemideficient KO and WT littermates (P > 0.05, t =
2.121, n = 16). However, lithium treatment reduces the activity in KO
mice compare to WT mice (P < 0.05, t = 3.265, n = 14).
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Figure 4 Sleep deprivation utilizing the inverted flower-pot
method results in a significant increase of distance travelled
(cm) in 30 min. By KO mice relative to WT littermates (P < 0.05,
n = 5 to 7 mice/group). This was significantly reduced with lithium
treatment in KO mice only.

KO WT
0

5000

10000

15000

H
or

iz
on

ta
l A

ct
iv

ity
(B

ea
m

 In
te

rr
up

tio
ns

)

Genotype

No Lithium
Lithium-Treated

P=0.0015

P=0.016

Figure 5 Sleep deprivation utilizing the inverted flower-pot
method results in a significant increase of Horizontal activity
over 30 min. In KO mice relative to WT littermates (n = 5 to 7
mice/group). This was significantly reduced with lithium treatment
in KO mice only.
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The function of these two isoforms appears distinct, so
that in the mice and in bipolar patients, there is no
upregulation of the alpha1 expression to compensate
for the deficiency in alpha2 expression (Rose et al. 1998;
Golovina et al. 2003a). Glia, in general, and the alpha2
subunit in particular are important in modulating the
synaptic environment and calcium signaling in the syn-
apse (Golovina et al. 2003a; Xiong and Stringer 2000).
Additionally, the alpha2 subunit is not uniformly distrib-
uted throughout the plasma membrane of astrocytes;
rather, it is intimately congregated in microdomains
that overlie calcium-rich endoplasmic reticulum (Juhaszova
and Blaustein 1997a, b). Consequently, alterations in
the alpha2 isoform expression alter sodium and cal-
cium flux (Golovina et al. 2003a, b). Furthermore, the
metabolic activity of glia and neurons are coupled; it is
the glycolytic activity of the glial Na,K-ATPase that
produces the lactate that fuels the neuronal energy de-
mands associated with firing and neurotransmission
(Magistretti 2006, 2009) particularly at times of neuronal
distress (Schurr et al. 1997; Schurr and Rigor 1998).
The current study suggests that glial dysfunction in-
duced by underexpression of the alpha2 subunit of the
Na,K-ATPase, in both the KO mice and humans with
bipolar illness (Rose et al. 1998), may be associated
with some manic symptoms.
While hyperactivity was observed at baseline in the

KO mice, it is notable that sleep deprivation also in-
duced hyperactive behavior in the KO mice compared to
WT littermates. Abnormalities of sleep are common and
important in the pathophysiology of bipolar illness (Brill
et al. 2011; Plante and Winkelman 2008), and sleep and
circadian rhythm-related genes appear to be associated
with bipolar disorder (Mansour et al. 2009; Sjoholm
et al. 2010). Sleep deprivation can trigger mood episode
switches in patients with bipolar disorder (Salvadore
et al. 2010). Bipolar patients appear to be sensitive to
cycle or rhythm disruption (Goodwin and Jamison
1990). Sleep deprivation is believed to play a role in the in-
duction of mania (Plante and Winkelman 2008) but is
used also as a treatment for bipolar depression (Wu et al.
2009). There are different types of sleep deprivation, and
in bipolar disorder, REM sleep deprivation appears to be
closely related to induction of mood elevation (Albert
et al. 1970; Vogel et al. 1975; Salvadore et al. 2010). REM
density is increased in euthymic bipolar subjects com-
pared to normal controls (Talbot et al. 2009) suggesting a
greater need in bipolar patients. It is notable that sleep
deprivation by inverted flowerpot method, which prevents
REM stage sleep (Kitka et al. 2009), was the only stressor
that induced lithium-preventable hyperactivity in the KO
mice (Figures 4 and 5).
There are clear limitations to the current study. The

primary one is that we did not directly document that
the glia within the KO mice are dysfunctional. However,
multiple ex vivo examinations of the same KO mouse
model reveals that glial function is compromised in a
significant manner (Golovina et al. 2003a, b; Hartford
et al. 2004). It is reasonable to assume that the differ-
ences in behavior observed are either directly or indir-
ectly related to the only difference between the KO mice
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and their WT littermates. Additionally, it should be
noted that the KO mice were created on a Black Swiss
strain background. Black Swiss mice have baseline
higher level of activity than other strains and were felt to
be ‘a good choice for modeling several domains of
mania’ by Flaisher-Grinberg and Einat (2010), who
investigated strain-specific mouse behavior. But, all of
our experiments were designed to examine KO mice
compared to their wild-type littermates. Consequently,
the increases in activity seen in KOs and the relative
reduction in hyperactivity induced in KOs compared to
wild-type littermates exhibit hyperactivity and manic-
like behavior that is above and beyond that observed by
Flaisher-Grinberg and Einat (2010). Finally, the behav-
ioral changes observed are not consistent with the full
syndrome of mania; only locomotor activity showed
change in alpha2 KO mice. Bipolar mania is manifested
by several symptoms, such as irritability, reduced need
for sleep, or increased distractibility, which can be mea-
sured in animals. This would suggest that the specific as-
pect of glial dysfunction modeled herein (reduction of
Na,K-ATPase alpha2 expression) does not produce the
full syndrome of mania but is associated with some as-
pects of the behavior.
Conclusions
In summary, this is the first demonstration that targeted
glial anomaly, in a manner that mimics findings in
people with bipolar disorder, can produce behavioral
changes in rodents consistent with ‘mania’. This is an
important step in understanding the potential role of a
wide range of glial abnormalities in bipolar illness.
Future investigation of glial abnormalities would appear
to be an important goal to understand the pathophysi-
ology of bipolar illness.
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