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Abstract 

Background: Bipolar disorder onset peaks over early adulthood and confirmed family history is a robust risk factor. 
However, penetrance within families varies and most children of bipolar parents will not develop the illness. Indi‑
vidualized risk prediction would be helpful for identifying those young people most at risk and to inform targeted 
intervention. Using prospectively collected data from the Canadian Flourish High‑risk Offspring cohort study available 
in routine practice, we explored the use of a neural network, known as the Partial Logistic Artificial Neural Network 
(PLANN) to predict the time to diagnosis of major mood disorders in 1, 3 and 5‑year intervals.

Results: Overall, for predictive performance, PLANN outperformed the more traditional discrete survival model for 
3‑year and 5‑year predictions. PLANN was better able to discriminate or rank individuals based on their risk of devel‑
oping a major mood disorder, better able to predict the probability of developing a major mood disorder and better 
able to identify individuals who would be diagnosed in future time intervals. The average AUC achieved by PLANN for 
5‑year prediction was 0.74, which indicates good discrimination.

Conclusions: This evaluation of PLANN is a useful step in the investigation of using neural networks as tools in the 
prediction of mood disorders in at‑risk individuals and the potential that neural networks have in this field. Future 
research is needed to replicate these findings in a separate high‑risk offspring sample.

Keywords: Bipolar spectrum, Major mood disorder, Prediction, Neural network, Longitudinal, High‑risk offspring

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco 
mmons. org/ licen ses/ by/4. 0/.

Background
Bipolar disorder affects an estimated 2.5% of the popu-
lation, with higher prevalence for spectrum conditions 
(Merikangas et al. 2007). The onset peaks in late adoles-
cence and early adulthood (Manchia et  al. 2008); how-
ever, delayed recognition and misdiagnosis remains a 
challenge. Untreated illness is associated with substantial 
morbidity and mortality early in the course (Kessing et al. 

2015), and therefore timely and accurate diagnosis is crit-
ical to facilitate prompt treatment.

Bipolar disorder runs in families, and therefore the 
children of bipolar parents are an identifiable high-risk 
group ideally suited for risk prediction studies (Duffy 
et  al. 2017). Family studies have shown that bipolar-
related mood disorders segregating in families includes 
major depressive disorder, bipolar I, II and schizoaffec-
tive bipolar disorder (Smoller and Finn 2003; McMahon 
et  al. 2010; Craddock and Sklar 2013). The penetrance 
and spectrum of phenotypes vary between families and 
according to the subtype of bipolar illness. Longitudinal 
prospective studies of high-risk offspring have provided 
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strong evidence that the illness often debuts with depres-
sive episodes years before any hypomanic or manic epi-
sodes (Duffy et al. 2019).

While key risk factors for the development of bipo-
lar disorder have been identified such as parental age of 
onset and clinical course, early adversity, and anteced-
ent clinically significant symptoms (Preisig et  al. 2016; 
Duffy et  al. 2016), translatable risk prediction tools for 
clinicians do not exist or are in the early stages of devel-
opment. For example, to our knowledge there has only 
been one published individualized risk calculator based 
on data from the BIOS longitudinal study of children of 
bipolar parents (Hafeman et al. 2017), which is yet to be 
replicated on an independent sample of familial at-risk 
offspring.

For studying events that occur over time, specialized 
modelling techniques that accommodate censoring are 
required (Allison 2010; Collett 2015). At the time the data 
analysis is conducted, not all individuals will necessarily 
have experienced the event of interest (bipolar-related 
mood disorders), and methods of survival analysis have 
been developed to accommodate these “censored” indi-
viduals, without introducing bias. In a longitudinal study, 
information on exposures and symptoms that might 
affect the risk of experiencing the outcome is collected 
repeatedly over time. Specialized techniques are neces-
sary to include these repeatedly measured time-varying 
predictors in the analysis, while ensuring that only those 
exposures which occur before the outcome event are 
counted as possibly affecting the outcome. These tech-
niques allow us to include the most up-to-date informa-
tion collected on exposures, study the effect of symptoms 
that may not be present at baseline but develop during 
the course of follow-up, and ensure that the timing of the 
exposures in relation to the event of interest is taken into 
account. The latter is important as risk may be increased 
immediately after the exposure onset compared to later in 
time. Also, these techniques allow us to include numeri-
cal covariates that change over time, such as cumulative 
number of exposures at each timepoint. The Cox model 
(Cox 1972) and the discrete survival model (Efron 1988) 
are two such techniques from statistical survival analysis.

Recently, the use of neural networks has become 
increasingly popular in research for risk prediction 
(Charati et al. 2018; Wunnava et al. 2019; Li et al. 2017; 
LaFaro et  al. 2015). An advantage of neural networks is 
that they do not rely on assumptions such as the distri-
bution of the response variable or proportional hazards. 
Furthermore, they automatically accommodate non-lin-
ear relationships between the response and exposure var-
iables (Biganzoli et al. 1998; Bourquin et al. 1997). Thus, 
rather than the researcher having to postulate a compli-
cated, possibly non-linear model, the neural network can 

just “learn” the relationship with minimal direction from 
the researcher.

The purpose of this article is to explore the use of a 
neural network known as Partial Logistic Artificial Neu-
ral Network (PLANN) (Biganzoli et al. 1998), to predict 
the time to diagnosis of bipolar-related major mood dis-
orders in the offspring of parents with confirmed bipolar 
disorder. For context, we compare PLANN to the more 
traditional discrete survival model. Both approaches 
accommodate censoring and time-varying predictors. 
The models are compared using several measures that 
assess the accuracy of the predictions. The prediction of 
which offspring are at greater risk of major mood disor-
der over time is important for clinical researchers, as it 
may allow for more proactive monitoring and prevention.

Methods
Study design
For this study, we used the data collected as part of the 
ongoing Canadian longitudinal high-risk offspring study 
described in detail elsewhere (Duffy et  al.  2014, 2019). 
The study design is a dynamic, prospective cohort study. 
Briefly, original study families were identified through 
parents with bipolar I disorder confirmed by SADS-
L interview and blind consensus review of all avail-
able clinical information. Subsequently, pedigrees were 
expanded and included first degree relatives of the origi-
nal probands, who themselves were affected with bipolar-
related major mood disorders (bipolar I, II, recurrent 
major depression). Agreeable offspring ages 5–25  years 
were enrolled and completed face to face research inter-
views following KSADS-PL format and study measures 
at baseline and then followed-up prospectively on aver-
age annually. This study has been reviewed for ethical 
compliance by the Ottawa Independent Research Eth-
ics Board and the Queen’s University Health Science 
Research Ethics Board.

Characteristics of participants and variables
In this analysis, we included 304 high-risk offspring from 
the Canadian high-risk cohort. The final data analysis was 
based on 292 high-risk individuals with no missing data 
for the predictors of interest. The outcome was defined 
as a DSM-IV diagnosis of bipolar-related major mood 
disorder including: bipolar disorder (Bipolar I, II, NOS), 
major depressive disorder and/or schizoaffective disorder 
based on semi-structured KSADS-PL format interviews 
and blind consensus review based on all available clini-
cal and research material. Participants who did not have 
a diagnosis of major mood disorder before their last fol-
low-up visit were considered censored at their last visit.

We limited variables in the model to those that would 
be relevant and routinely collected by clinicians in an 
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office setting. Time-fixed predictors included sex at birth, 
parental response to lithium prophylaxis, parental age of 
onset of bipolar diagnosis, and childhood physical/sexual 
abuse. Time-varying predictors included the absence or 
presence at a given age of antecedent clinically signifi-
cant symptoms and non-mood disorders (occurring prior 
to the outcome). In addition, the cumulative number 
of antecedent major and minor mood episodes at each 
age (occurring prior to the outcome) were included as 
time-varying predictors. Clinically significant activation 
(hypomanic), depressive, anxiety symptoms falling short 
of diagnostic criteria, as well as substance misuse and 
sleep problems were quantified based on clinical research 
interview and previously published consensus crite-
ria (Duffy et al. 2019) (see Additional file 1). Childhood 
physical and sexual abuse was determined in offspring 
13  years of age and older using the Childhood experi-
ences of care and Abuse Scale (Bifulco et al. 2005), Note 
that only information up until time of diagnosis of major 
mood disorder or last follow-up visit was used in con-
structing the time-varying predictors. The time scale for 
both models was age of participant. In all analyses, covar-
iates were lagged by one time interval in order to reduce 
the risk of reverse-causality and to enable predictions in 
the future time interval.

Statistical analysis
PLANN and the discrete survival model are similar in 
many respects. Both approaches can accommodate time-
fixed and time-varying predictors and use the same data 
setup (see Additional file 1). Both approaches predict the 
probability that an individual will experience the out-
come within a given time frame, conditional on the indi-
vidual not yet having experienced the outcome. However, 
the internal calculations performed to make the predic-
tions are different (see Additional file  1), resulting in 
different values for the predicted probabilities. The dis-
crete survival model assumes that odds are proportional 
at each time point and that the relationship between the 
hazard (risk) of the event and covariates is linear on the 
logistic scale, whereas PLANN makes no such assump-
tions (Allison 2010; Biganzoli et al. 1998). Details of the 
two models are included in the Additional file 1.

Models were evaluated using several assessment meas-
ures. The time-dependent c-index (Antolini et  al. 2005) 
was used to quantify how well the model can rank indi-
viduals on their time to developing the outcome. The area 
under the receiver operating curve (AUC) is often used as 
a measure of the model’s ability to discriminate low and 
high-risk individuals (Zhou et al. 2011). Both the c-index 
and AUC range between 0 and 1, with 1 being best and a 
value greater than 0.5 being better than chance. The Brier 
score (Graf et al. 1999) measures the difference between 

the predicted probability of the event not occurring by 
a given follow-up time and the observed status of the 
individual at that time. The Brier score ranges between 
0 and 1, with lower scores being better, 0 indicating per-
fect calibration and 0.25 indicating a non-informative 
model that is no better than chance. Common meas-
ures of prediction performance were used including 
accuracy, sensitivity, specificity, and positive predic-
tive value. We used tenfold stratified cross-validation 
(see Additional file  1) to evaluate the predictive perfor-
mance of the two models over 1-year, 3-year, and 5-year 
time intervals. For percentages, 95% confidence intervals 
were calculated as 100 × (p ± 1.96 × sqrt(p × (1−p)/n)) 
where p is the observed proportion and n is the sample 
size. For means m, 95% confidence intervals were calcu-
lated as m ± 1.96 × (sd/sqrt(n)) where sd is the standard 
deviation.

Results
Table 1 presents the observed percent or means (and 95% 
confidence intervals) of the predictor variables included 
in the analyses. About 41% of participants were male. 
The mean age (at the time of the outcome event or cen-
soring) was 21 years, and the mean age of parental onset 
was about 25  years. Childhood abuse was reported by 
10% of offspring, while 38% were missing information 
on this variable as result of not being age appropriate for 
the measure or not yet completing the measure on next 
research visit. For the time-varying predictors, reported 
percentages/means are for disorders/episodes experi-
enced before the outcome event or censoring. Over 41% 
of individuals had at least one clinically significant sub-
threshold symptom presentation, with the most prevalent 
being subthreshold anxiety at 15.4%. The most prevalent 
disorder was anxiety disorder at close to 30%.

Out of the 292 individuals included in the analysis, 
112 (38.4%) developed a major mood disorder by their 
last follow-up visit, while 180 (61.6%) did not and were 
censored. As shown in the right-hand column of Table 1, 
proportionately fewer males experienced the outcome 
than were present in the full sample (31% versus 41%), 
and those who experienced the outcome were slightly 
younger on average (19.6 versus 21.0  years). More of 
those diagnosed with a major mood disorder experienced 
substance use, anxiety, and subthreshold activation and 
depression than in the full at-risk offspring sample.

Model comparisons
Table  2 compares PLANN and the discrete survival 
model in terms of the assessment measures, averaged 
across time intervals and using tenfold cross-validation, 
for 1-, 3- and 5-year predictions. Recall that for the 
Brier score, lower is better, while for the c-index and 
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AUC, higher is better. PLANN outperformed the dis-
crete survival model on the Brier score which measures 
the difference between observed and predicted values. 
The c-index indicates how well the model ranks indi-
viduals in terms of their event times. PLANN outper-
formed the discrete survival model at all three interval 
lengths. On mean AUC, PLANN outperformed the dis-
crete survival model in 3-year and 5-year predictions, 
but the opposite is true in 1-year predictions. PLANN 
does better at 5-year predictions than at 1- or 3-year 

predictions according to mean AUC. The 5-year mean 
AUC for PLANN was 0.74.

Table  3 shows mean accuracy, specificity, sensitivity, 
and positive predictive value (PPV), for 1-year, 3-year, 
and 5-year predictions for the two models, where the 
mean is taken across time intervals and tenfold cross-val-
idation was used (see Additional file 1 for more details). 
For 1-year prediction, PLANN outperformed the discrete 
survival model with higher sensitivity, specificity, and 
PPV when the optimal threshold was used. However, for 

Table 1 Percent observed or mean of all variables included as covariates in the models and 95% confidence intervals for the percent 
or mean, for full sample (n = 292) and individuals with the outcome (n = 112)

a Missing refers to having not completed the measure either due to not being age appropriate to complete or not yet completing the measure; bsee Additional file 1 
for definitions of subthreshold conditions

Variable Full sample (n = 292) Individuals with outcome (n = 112)

n (%) or mean [95% CI] n (%) or mean [95% CI]

Time‑fixed

 Sex (male) 121 (41.4) [35.8, 47.1] 35 (31.3) [22.6, 39.9]

 Age (at outcome or censoring) 21.0 [20.2, 21.9] 19.6 [18.6, 20.6]

 Parental lithium response 129 (44.2) [38.5, 49.9] 47 (42.0) [32.8, 51.1]

 Parental onset age 25.4 [24.4, 26.5] 25.5 [23.7, 27.4]

 Physical/sexual abuse

  Yes 30 (10.3) [6.1, 13.8] 14 (12.5) [6.3, 18.7]

   Missinga 111 (38.0) [32.4, 43.6] 32 (28.6) [20.2, 37.0]

Time‑Varying

Disorders

  Subthresholdb activation 29 (9.9) [6.5, 13.4] 19 (17.0) [10.0, 23.9]

 Subthreshold depression 31 (10.6) [7.1, 14.2] 17 (15.2) [8.5, 21.6]

 Subthreshold sleep 9 (3.1) [1.1, 5.1] 2 (1.8) [0.0, 4.2]

 Subthreshold substance use 36 (12.3) [8.6, 16.1] 13 (11.6) [5.6, 17.6]

 Subthreshold anxiety 45 (15.4) [11.3, 19.6] 17 (15.2) [8.5, 21.9]

 Substance use 51 (17.5) [13.1, 21.8] 29 (25.9) [17.7, 34.0]

 Sleep 54 (18.5) [14.0, 23.0] 18 (16.1) [9.2, 22.9]

 Anxiety 87 (29.8) [24.5, 35.0] 39 (34.8) [26.0, 43.7]

 Neurodevelopmental 33 (11.3) [7.7, 14.9] 12 (10.7) [5.0, 16.5]

Number of episodes

 Major mood 0.2 [0.1, 0.3] 0.2 0.1, 0.3]

 Minor mood 0.2 [0.1, 0.3] 0.1 [0.0, 0.2]

Table 2 Comparison of the evaluation metrics for PLANN and the discrete survival model with 1‑year, 3‑year and 5‑year predictions

a The mean Brier score is the average Brier score across 15, 20, and 25 years
b The mean AUC is the average AUC across the time intervals measured

One-year Three-year Five-year

PLANN survival PLANN survival PLANN survival

Mean Brier  Scorea 0.177 0.180 0.182 0.188 0.179 0.190

C‑index 0.633 0.556 0.549 0.513 0.590 0.520

Mean AUC(SD)b 0.633 (0.170) 0.740 (0.144) 0.708 (0.123) 0.655 (0.124) 0.745 (0.076) 0.669 (0.063)
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3- and 5-year predictions, PLANN and the discrete sur-
vival model gave similar results for the optimal thresh-
olds. A trade-off between specificity and sensitivity was 

demonstrated for both models across all prediction 
intervals when examining performance across differ-
ent thresholds. With lower thresholds, sensitivity is high 
and specificity is low, whereas the opposite was true for 
higher thresholds. Optimal thresholds achieve a balance 
between sensitivity and specificity.

Finally, it was of interest to assess whether the models 
could distinguish between three individuals in the test set 
selected based on their observed diagnosis and censoring 
time. The individual in the test set with the earliest diag-
nosis time was considered the ‘earlier-onset’ individual, 
the individual with the median diagnosis time was con-
sidered the ‘mid-onset’ individual and the individual with 
the highest censoring time (longest survival time) was the 
‘no onset’ individual. The ‘earlier-onset’ individual expe-
rienced a major mood disorder at 11.64 years, the ‘mid-
onset’ individual was diagnosed at 19.85 years and the ‘no 
onset’ individual was censored at 39.79  years. For these 
three individuals, the predicted survival curves were 
plotted for 1 year, 3 year and 5-year predictions made by 
PLANN (Fig. 1). PLANN predicted that the ‘earlier-onset’ 
individual had the lowest survival probability over time.

When making 1-year predictions of major mood dis-
order, PLANN could predict that the ‘mid-onset’ indi-
vidual had a lower survival probability than the ‘no onset’ 
individual. However, PLANN had more difficulty dis-
tinguishing between the ‘mid-onset’ and ‘no onset’ indi-
viduals when three and five-year predictions were made. 
For these individuals, the predicted survival curves were 
additionally plotted for the discrete survival model with 
one-year predictions, three-year predictions and five-
year predictions. As seen in Fig.  2, the discrete survival 
model predicted that the ‘earlier-onset’ individual had a 
higher probability of diagnosis (i.e. lower survival prob-
ability) over time compared to the ‘mid-onset’ and ‘no 
onset’ individuals. However, for 1-year, 3-year and 5-year 
predictions, the discrete survival model predicted that 
the ‘mid-onset’ individual had a higher probability of not 
being diagnosed than the ‘no onset’ individual. These 
findings further demonstrate that PLANN outperforms 
the discrete survival model in discrimination of higher-
risk versus lower-risk offspring.

Discussion
In this study we explored the potential utility of using 
Partial Logistic Artificial Neural Network (PLANN), an 
extension of discrete survival analysis, to predict time 
to diagnosis of major mood disorder at 1, 3 and 5 years 
into the future in a well-characterized prospectively fol-
lowed cohort of high-risk individuals identified based 
on a parent with bipolar disorder. We limited fixed 
and time-varying covariates in the model to data that 
would be routinely collected and available in clinical 

Table 3 Mean accuracy, specificity, sensitivity, and positive 
predictive value (PPV) across time intervals and 10 CV‑folds for 
1‑year, 3‑year, and 5‑year predictions for PLANN and the discrete 
survival model

a One-year predictions made by PLANN were all below 0.15 and therefore, 
thresholds of 0.15 or greater could not be evaluated for accuracy metrics
b The Optimal rows present the average accuracy metrics across time intervals 
when the optimal threshold of each time interval is used (see Additional file 1)

Model Threshold Accuracy Specificity Sensitivity PPV

One year

  PLANNa

0.05 0.751 0.762 0.272 0.064

0.10 0.948 0.986 0.019 0.051

0.15 – – – –

0.20 – – – –

Optimalb 0.681 0.683 0.488 0.081

 Survival

0.05 0.772 0.783 0.360 0.073

0.10 0.895 0.924 0.186 0.100

0.15 0.927 0.960 0.128 0.133

0.20 0.940 0.976 0.083 0.160

Optimalb 0.556 0.560 0.383 0.043

Three year

 PLANN

0.05 0.269 0.186 0.822 0.107

0.10 0.588 0.583 0.443 0.111

0.15 0.762 0.808 0.257 0.167

0.20 0.818 0.899 0.096 0.143

Optimalb 0.591 0.591 0.506 0.134

 Survival

0.05 0.270 0.181 0.791 0.101

0.10 0.533 0.513 0.483 0.111

0.15 0.760 0.813 0.218 0.125

0.20 0.841 0.919 0.128 0.134

Optimalb 0.572 0.582 0.474 0.130

Five year

 PLANN

0.05 0.222 0.070 0.934 0.162

0.10 0.425 0.335 0.709 0.169

0.15 0.582 0.546 0.565 0.210

0.20 0.687 0.722 0.360 0.213

0.607 0.617 0.577 0.230 0.607

 Survival

0.05 0.264 0.116 0.893 0.161

0.10 0.410 0.300 0.662 0.143

0.15 0.548 0.511 0.508 0.160

0.20 0.709 0.738 0.420 0.238

Optimalb 0.601 0.615 0.515 0.224
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practice (i.e., sex, age, childhood abuse, subthreshold 
antecedent clinically significant symptoms and lifetime 
antecedent non-mood diagnoses). We included major 
depressive disorder as part of the bipolar-related major 
mood disorders given (i) major depression is consid-
ered part of the bipolar spectrum in genetic studies 
(McMahon et  al. 2010; McGuffin et al. 2003; Coleman 
et al. 2020) and (ii) bipolar disorder typically debuts as 
major depression in high-risk offspring of bipolar par-
ents (Duffy et al. 2017; Mesman et al. 2013).

PLANN was compared to the more traditional dis-
crete survival model to assess whether the use of a neural 
network provides any benefit over a traditional statisti-
cal modeling approach. While PLANN and the logistic 
model have common advantages, such as enabling the 
incorporation of time-varying covariates due to the use 
of discrete time intervals, both models also have distinct 
advantages over one another. The logistic model allows 
for the interpretation of the effect of covariates on the 
discrete hazard and the evaluation of whether or not the 

Fig. 1 Predicted survival curves for ‘earlier‑onset’, ‘mid‑onset’ and ‘no onset’ individuals in test set of single fold for PLANN with (a) 1 year, b 3 year 
and (c) 5‑year predictions. Legend: blue line indicates high‑risk offspring with earlier‑onset, orange line indicates mid‑onset and green line indicates 
no‑onset of bipolar‑related major mood disorder over observation time
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covariates have a significant effect on the discrete hazard, 
although this was not pursued here. On the other hand, 
PLANN makes fewer assumptions about the relation-
ship between the outcome and covariates and has the 
ability to automatically detect non-linear relationships 
in the data. The latter point is important, as for example, 
mood instability has been found to follow non-linear pat-
terns (Bonsall et  al. 2012). A drawback of PLANN, and 
machine learning models in general, is that they are com-
putationally intensive, requiring high-performance com-
puter clusters and many days of computation, whereas 
discrete survival models take only a few seconds to fit.

Overall, for predictive performance, PLANN out-
performed the logistic model for 3-year and 5-year 
predictions. PLANN was better able to discriminate 
or rank individuals based on their risk of develop-
ing major mood disorder (i.e., higher time-dependent 
c-indices) and better able to predict the probability 
of developing major mood disorder (i.e., lower Brier 
scores). The results were mixed for 1-year predic-
tions, with the discrete survival model outperforming 
PLANN for AUC. For five-year predictions, the aver-
age AUC from PLANN was 0.74, which indicates that 
the model shows good discrimination between high 

Fig. 2 Predicted survival curves for ‘earlier‑onset’, ‘mid‑onset’ and ‘no onset’ individuals in test set of single fold for the discrete survival model with 
(a) 1 year, b 3 year and (c) 5 year predictions. Legend: blue line indicates high‑risk offspring with earlier‑onset, orange line indicates mid‑onset and 
green line indicates no‑onset of bipolar‑related major mood disorder over observation time
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and low risk individuals. This value is comparable to 
(Hafeman et al. 2017) who achieved an AUC of 0.76 for 
5-year predictions.

Prediction was superior in the 3 and 5-year models 
compared to the 1-year models, as evidenced by higher 
AUC, sensitivity and positive predictive values. This 
is not surprising, as relatively few events occurred in 
specific 1-year intervals, compared to three or 5  year 
intervals (see Additional file 1: Tables S2 and S3). Also, 
it is intuitively more difficult to predict that an event 
will occur in a 1-year interval, than to say it will hap-
pen sometime over the next 5 years.

Individualized risk prediction has important impli-
cations for research and clinical practice. By identify-
ing from among individuals at familial risk those most 
likely to develop illness, an ultra-high risk group can 
be identified that can inform research into the deter-
minants of illness onset and prevention. Moreover, 
this ultra-high risk group would be suitable and would 
likely benefit from prospective surveillance and low-
risk intervention and psychoeducation targeting sleep 
hygiene, healthy coping and stress reduction, healthy 
lifestyle and diet and avoidance of alcohol misuse 
and drug use. Our risk prediction approach of using 
PLANN to predict onset of bipolar-related major 
mood disorder differs from other published risk cal-
culators such as (Hafeman et  al. 2017), which used a 
“baseline re-setting” Cox proportional hazards model. 
Both the Cox model and PLANN allow the inclusion 
of covariates measured at baseline and at follow-up 
visits and neither method requires an assumption 
about the distribution of the outcome variable. How-
ever, unlike the Cox model, PLANN does not require 
a proportional hazards assumption. In addition, we 
only included model variables in PLANN that would 
be available in routine practice.

Strengths and limitations
Strengths include the carefully assessed parental diag-
noses based on longitudinal clinical observations 
confirming the risk status in the offspring, the meas-
urement of diagnosis in high-risk offspring through 
semi-structured research clinical assessments and 
blind consensus reviews. However, the following limi-
tations relevant to this analysis are worth noting. The 
sample size is small, particularly for neural networks, 
which typically require sample sizes in the thousands; 
it is notoriously difficult to make predictions in medi-
cine, due to lack of relevant variables (Lawless 2010) 
and thus additional breadth of data (e.g., genetic data, 
behavioural data) may improve predictions.

Conclusion
This evaluation of PLANN is a useful step in the investi-
gation of using neural networks as tools in the prediction 
of diagnosis of mood disorders for at-risk individuals and 
demonstrated the potential that neural networks have in 
this field. PLANN performed better than the traditional 
discrete time survival model in predicting the develop-
ment of major mood disorders in high-risk individuals. 
Future research replicating these approaches in different 
samples with the inclusion of additional data will help 
inform the further utility of risk prediction models to 
aid in research and clinical decision making in individu-
als at familial risk of developing bipolar-related mood 
disorders.
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