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Abstract 

Background:  Treatment in bipolar disorder (BD) is commonly applied as a multimodal therapy based on decision 
algorithms that lack an integrative understanding of molecular mechanisms or a biomarker associated clinical out‑
come measure. Pharmacogenetics/genomics study the individual genetic variation associated with drug response. 
This selective review of pharmacogenomics and pharmacogenomic testing (PGT) in BD will focus on candidate genes 
and genome wide association studies of pharmacokinetic drug metabolism and pharmacodynamic drug response/
adverse event, and the potential role of decision support tools that incorporate multiple genotype/phenotype drug 
recommendations.

Main body:  We searched PubMed from January 2013 to May 2019, to identify studies reporting on BD and pharma‑
cogenetics, pharmacogenomics and PGT. Studies were selected considering their contribution to the field. We sum‑
marize our findings in: targeted candidate genes of pharmacokinetic and pharmacodynamic pathways, genome-wide 
association studies and, PGT platforms, related to BD treatment. This field has grown from studies of metabolizing 
enzymes (i.e., pharmacokinetics) and drug transporters (i.e., pharmacodynamics), to untargeted investigations across 
the entire genome with the potential to merge genomic data with additional biological information.

Conclusions:  The complexity of BD genetics and, the heterogeneity in BD drug-related phenotypes, are important 
considerations for the design and interpretation of BD PGT. The clinical applicability of PGT in psychiatry is in its 
infancy and is far from reaching the robust impact it has in other medical disciplines. Nonetheless, promising findings 
are discovered with increasing frequency with remarkable relevance in neuroscience, pharmacology and biology.
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Background
Bipolar Disorder (BD) is a complex chronic mood dis-
order where patient’s lives are variably associated with 
episodic recurrence (Angst and Sellaro 2000; Judd and 
Akiskal 2003), psychosocial and functional disability 
(Tohen et  al. 2000; Zarate et  al. 2000), and substantial 
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morbidity and mortality especially in the depressive 
phase of illness (Frye 2011). While there have been 
advances in disease classification of illness subtype (i.e., 
BD-I, BD-II), symptom specifier (i.e., anxious distress, 
mixed features, rapid cycling, peripartum onset), and 
increasing recognition of high rates of comorbidity, the 
illness remains highly heterogeneous within patient 
groups and within a single patient’s longitudinal course of 
illness (Malhi et al. 2018). Moreover, the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-5) classifi-
cation is not defined by an underlying pathophysiology 
and as such, limits the current understanding of neuro-
biological mechanisms of differential illness presentation 
and development of biomarkers of disease burden (Frey 
et al. 2013; Harrison et al. 2018).

There is no greater psychotropic pharmacopoeia in 
psychiatry than that of BD. Treatment selection with lith-
ium, mood stabilizing anticonvulsants, mood stabilizing 
atypical antipsychotics, typical antipsychotics, unimodal 
antidepressants, and benzodiazepines, most commonly 
as a multimodal therapy, will be based on a number of 
factors including: clinical evidence base, phase of illness 
and symptom severity, BD-I vs BD-II subtype, level of 
cyclicity, and additional mental health and medical diag-
noses that may impact efficacy and/or side effect burden. 
Molecular drug mechanisms of action, biomarkers of 
treatment response or adverse events, are not part of any 
clinical decision algorithm in BD. Oftentimes, polyphar-
macotherapy is necessary to achieve remission (Frye et al. 
2000). However, multimodal drug therapy is challeng-
ing given the potential for pharmacokinetic drug–drug 
interactions and cumulative side effect burden. Devel-
oping biomarkers to individualize treatment in hopes of 
increasing rates of remission, tolerability, and adherence 
or mitigate serious drug related adverse event risk would 
represent a paradigm shift in current clinical practice 
models for both prescribers and patients.

Pharmacogenetics/genomics study the individual 
genetic variation associated with drug response. This 
field has grown from studies of metabolizing enzymes 
(i.e., pharmacokinetics) and drug transporters (i.e., phar-
macodynamics), to untargeted investigations across the 
entire genome with the potential to merge genomic data 
with additional biological information (Weinshilboum 
and Wang 2017). Additional focus on a patient’s individ-
ual biology, vs solely broad Food and Drug Administra-
tion (FDA) indication labeling, may facilitate patient care 
with the “right drug, right dose, right time” (Bielinski 
et al. 2014). There are early pharmacogenomic studies in 
most treatment classes in BD (Pisanu et al. 2018b). This is 
of special importance in BD, where early intervention can 
have a positive impact in the progression of the disease 
(Post 2018).

For this selective review of pharmacogenomics in BD 
we searched PubMed from January 2013 to May 2019, 
to identify studies reporting on BD and pharmacogenet-
ics, pharmacogenomics and pharmacogenomic testing 
(PGT). The authors selected studies based on their con-
tribution to the field. We focus on candidate genes and 
genome wide association studies (GWAS) of pharma-
cokinetic drug metabolism and pharmacodynamic drug 
response/adverse event, and the potential role of decision 
support tools (DST) that incorporate multiple genotype/
phenotype drug recommendations. The Clinical Pharma-
cogenomics Implementation Consortium (CPIC) (Relling 
and Klein 2011), was established as a joint effort between 
PharmGKB and the Pharmacogenomics Research Net-
work (PGRN) to develop peer-reviewed guidelines for 
implementation of PGT, will be reviewed to illustrate 
early examples of clinical practice recommendations.

Targeted candidate genes in pharmacokinetic drug 
metabolism
The Cytochrome P450 (CYP) superfamily of proteins 
(2D6, 2C9, 2C19, 3A4) is one of the most important 
enzymatic classes responsible for phase I drug-metabo-
lism, and thus, relevant to most of psychiatric medica-
tion’s metabolism and bioactivation (Spina and de Leon 
2015). The notable exception, given its lack of metabo-
lism is lithium. Early efforts in pharmacogenetics were, 
in part, dedicated to CYP genotyping/metabolic phe-
notyping with the goal of operationally defining pheno-
type classes that would be associated with response and 
side effects. These CYP phenotypic classifications [i.e., 
poor, intermediate, extensive (normal), and ultra-rapid] 
are the most common application of commercial PGT 
in psychiatry (Eum et  al. 2016), however, no standard-
ized model prevails to date (Gaedigk et  al. 2017). It is 
important to acknowledge that race and ethnicity are 
important sources of variability between populations in 
allele composition and frequency of CYP genes. Inter-
individual variability is even larger than that observed 
between ancestries producing large ranges of CYP activ-
ity among individuals. Moreover, CYP genes are strongly 
influenced by complex environmental factors that can-
not be accounted by current PGT (McGraw et al. 2018). 
Nonetheless, the poor metabolizer phenotype and use of 
antidepressants has been the focus of a number of foren-
sic cases of possible drug related fatality (i.e., 2D6), has 
driven a number of FDA drug label revisions (i.e., 2D6, 
2C19) related to arrhythmia risk, and has been specu-
lated, given black box warning for antidepressants in 
young adults, as a possible mechanism of treatment 
emergent suicidal ideation and antidepressant induced 
mania (AIM), both phenomena often identified early 
in the course of treatment [reviewed by (Nassan et  al. 
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2016)]. Table 1 summarizes the evidence on pharmacoki-
netic PGT by drug class. Comprehensive sources on CYP 
PGT in psychiatry (Spina and de Leon 2015; Eum et  al. 
2016; Solomon et  al. 2019) and CYP2D6 genetic varia-
tion considerations (Nofziger et  al. 2020) are reviewed 
elsewhere.

CYP2D6
CYP2D6 is the most involved CYP isoform in psychiat-
ric drug metabolism, and hundreds of CYP2D6 polymor-
phisms and copy number variations have been identified, 
many of which have unknown effects (McGraw et  al. 
2018). Multiple antidepressants and antipsychotics of 
different classes are its substrates, and CYP2D6 is inhib-
ited strongly by fluoxetine, paroxetine, perphenazine and 
thioridazine. A recent study by Gaedgik et al. (2017) ana-
lyzed 177 reports of a world-wide population compro-
mised of approximately 60,000 unrelated subjects and 
categorized them in metabolism phenotypes according 
to genotype meeting CPIC guidelines. Europeans repre-
sented most of the genotyped population (36%) and also 
had the greatest proportion of poor metabolizers (aver-
age, 5.4%), while Asians, Oceanians, and Middle Eastern 
populations, showed rates lower or equal to 1%. Ultra-
rapid metabolizers were most represented in Oceanian 
(21.2%), Ashkenazi Jewish (11.5%), and Middle Eastern 
(11.2%) populations, with the lowest proportion in sub-
jects from East Asia (1.4%). In spite of such efforts, the 
great genotypic variation in CYP2D6 confers confound-
ing effects to the actual metabolism phenotype observed 
in individuals, and clinical studies may not always reflect 
an accurate prediction of treatment response, tolerability, 
or even pharmacokinetic parameters. It is also important 
to note that most of these clinical studies are non-pro-
spective, have great heterogeneity in design, often have 
low subject numbers and do not control for environmen-
tal or drug–drug interactions (Eum et al. 2016).

Fifteen antipsychotics are major or minor substrates 
of CYP2D6 including most options for BD treatment, 
with quetiapine (CYP3A4, CYP3A5) and ziprasidone 
(CYP1A2, CYP3A4) as notable exceptions (Eum et  al. 
2016). There is variability in the magnitude of change 
in 2D6 poor-metabolizers’ antipsychotic serum con-
centrations and/or half-life for primary CYP2D6 antip-
sychotic substrates [i.e., 1.7X increase in aripiprazole 
serum concentration (Hendset et al. 2007), 2X increase 
and 7X increase in half-life of aripiprazole and risp-
eridone respectively (Eum et  al. 2016)]. A recent large 
retrospective cohort of CYP2D6 genotyped subjects 
treated with either risperidone (N = 1288) or aripipra-
zole (N = 1334) found statistically significant decreased 
metabolic ratios (i.e. metabolite/parent drug) for both 
drugs in poor and intermediate metabolizers; while 

greater metabolic ratios for ultra-rapid metabolizers, 
were only statistically significant for risperidone (Jukic 
et al. 2019). Moreover, poor and intermediate metabo-
lizers showed increased risperidone and aripiprazole 
active moiety. These two drugs seem to present the 
greatest caution in 2D6 poor-metabolizer dosing; for 
further information on CYP2D6 and dosing precau-
tions see Table 1.

A meta-analysis found no association between CYP2D6 
genotyping and psychosis treatment efficacy in schizo-
phrenia (Fleeman et  al. 2011; Muller et  al. 2012) how-
ever, it is important to point out that the authors found 
great variability of methodology and outcomes. The same 
study found, when including only prospective studies, a 
positive association between genotype, quantified only 
as mutant (i.e., not normal) vs wild type (i.e., normal), 
and tardive dyskinesia (Fleeman et  al. 2011). In the ret-
rospective study mentioned above, Jukic et  al., found 
dose reductions from clinicians in both risperidone (19%) 
and aripiprazole (15%) poor metabolizers, however, only 
risperidone poor and ultra-rapid metabolizers show sig-
nificantly higher switching to other antipsychotic agents; 
with no metabolizing phenotype showing greater switch 
to other agents in the aripiprazole group (Jukic et  al. 
2019). Performing prospective studies in BD will be of 
paramount importance before reaching more applicable 
clinical interpretations of CYP2D6 genotyping and antip-
sychotic prescription.

Studies associating CYP2D6 genotype and antidepres-
sant pharmacokinetics and treatment response have 
been mostly performed in major depression. In patients 
treated with escitalopram (Ng et al. 2013; Hodgson et al. 
2014, 2015), venlafaxine (Ng et  al. 2013; Taranu et  al. 
2017) and nortriptyline (Hodgson et al. 2014, 2015), there 
was no association between metabolizing phenotype of 
CYP2D6 and response to these agents. The sole excep-
tion is the Lobello et  al. (2010) study, which reviewed 
four placebo-controlled studies (n = 464) where 2D6 
poor metabolizers, in comparison to extensive metabo-
lizers, had significantly higher levels of serum parent 
compound venlafaxine, lower levels of active metabolite 
O-desmethylvenlafaxine, reduced baseline to endpoint 
change in depression scores, and significantly lower rates 
of treatment response and remission.

There is limited evidence that CYP2D6 poor-metab-
olizers were more likely to discontinue antidepressants 
(Berard et  al. 2017). Antidepressant induced mania 
(AIM) has been reported in 3 bipolar depressed patients 
with a 2D6 poor metabolizer phenotype when prescribed 
2D6 metabolized antidepressants (Sanchez-Iglesias 
et  al. 2016). Similar to antipsychotics, CYP2D6 geno-
typing does not have a clear role in clinical decision for 
antidepressant prescription in bipolar patients, further 
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Table 1  Potential content of commercial PGT+

Gene* Drug-class Use in bipolar disorder Trial on BD population CPIC level of evidence FDA label

CYP2D6 Second-Generation Antipsychotics 
(SGAs)

Positive association of CYP2D6 
genotype and tardive dyskinesia 
(Fleeman et al. 2011)

No Not included No

SGAs Positive association of CYP2D6 
genotype and weight gain (Flee‑
man et al. 2011)

No Not included No

Aripiprazole Changes in serum concentrations 
in poor metabolizers (Hendset 
et al. 2007)

No B Actionable

Risperidone Changes in serum concentrations 
in poor metabolizers (Eum et al. 
2016)

No B Informative

Tricyclic Antidepressants Association of changes in serum 
concentrations with metabolizer 
phenotype (Hicks et al. 2017)

No A, Guideline Informative

Selective Serotonin Reuptake Inhibi‑
tors (SSRIs)

Association of changes in serum 
concentrations with metabolizer 
phenotype (Hicks et al. 2015)

No C-D, Guideline Informative

Antidepressant induced mania 
(AIM) in 3 poor metabolizer 
bipolar patients (Sanchez-Iglesias 
et al. 2016)

Yes (mixed) Not included No

CYP2C19 Tricyclic Antidepressants Association of changes in serum 
concentrations with metabolizer 
phenotype (Hicks et al. 2017)

No A, Guideline No

Citalopram, Escitalopram Association of changes in serum 
concentrations with metabolizer 
phenotype (Hicks et al. 2015)

No A, Guideline Actionable

Escitalopram A retrospective study of 2087 gen‑
toyped patients showed that poor 
and ultrarapid CYP2C19 metabo‑
lizers seem to predict greater 
switching from escitalopram to 
another agent (Jukic et al. 2018)

Multiple Diagnosis Not included No

Sertraline Association of changes in serum 
concentrations with metabolizer 
phenotype (Hicks et al. 2015)

No B, Guideline No

HLA-B Carbamazepine There is a strong recommenda‑
tion by the CPIC of not to use 
carbamazepine in carbamazepine 
naive patients, with HLA-B*15:02 
positive subjects given a “Greater 
risk of carbamazepine-induced 
SJS/TEN”. Proceed with caution in 
HLA-B*15:02 negative subjects, 
depending on HLA-A*31:01 geno‑
type; there may be an average risk 
in negative vs. Higher risk in posi‑
tive alleles (Phillips et al. 2018)

HLA-B variants have been associ‑
ated with carbamazepine induced 
agranulocytosis/granulocytopenia 
in European populations (Gold‑
stein et al. 2014)

No A Actionable
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Table 1  (continued)

Gene* Drug-class Use in bipolar disorder Trial on BD population CPIC level of evidence FDA label

CYP2C9  Valproate The loss-of-function alleles, 
CYP2C9*2 or CYP2C9*3, display 
significant reduction in valproate 
metabolism in children; further‑
more, low CYP2C9 expression 
in patients with CYP2C9*1/*1 
genotype also leads to a decrease 
in valproate metabolizing capacity 
(Monostory et al. 2019)

No No No

GRIK4 Citalopram Initial modest association observed 
in the STAR*D trial (Paddock 
et al. 2007). Meta-analysis results 
showed that the C allele appeared 
more frequently than the T allele 
in responders to treatment (OR: 
1.22; 95% CI 1.035–1.445; z = 2.36; 
p = 0.018) (Kawaguchi and Glatt 
2014)

No Level D No

 Haloperidol Early and modest evidence of 
association with antimanic effect 
of haloperidol in BD (Drago et al. 
2013)

Yes No No

DRD2 Aripiprazole, Risperidone C/C homozygotes improved in 
positive symptoms more than 
the T carriers during 12 weeks of 
treatment with aripiprazole or 
risperidone, C/C homozygotes 
developed more akathisia dur‑
ing treatment with aripiprazole, 
rolactin elevation in males treated 
with risperidone, in that C/C 
homozygotes had lower elevation 
of prolactin compared to the T 
carriers (Zhang et al. 2015)

First-episode psychosis C (Risperidone) No

Antipsychotics A meta-analysis of 698 schizo‑
phrenia patients, found that Del 
allele carrier of the -141C Ins/Del 
polymorphism, were significantly 
associated with poorer antipsy‑
chotic drug response, compared 
to the Ins/Ins genotype, OR = .65, 
p = 0.03 (Zhang et al. 2010)

No C (Risperidone)

SLC6A4 Antidepressants A meta-analysis of 1034 bipolar 
patients and antidepressant 
remission rates reported reduced 
anti-depressive remission rates in 
S-carriers of the serotonin trans‑
porter promoter polymorphism 
(OR  =  0.64, p  =  .006, I2 = 0.0%) 
(Rao et al. 2019)

Yes Not included No

A 6-study (453 bipolar patients) 
meta-analysis demonstrated a 
marginally significant evidence 
of association of the S allele with 
AIM (OR = 1.35; 95% CI 0.99–1.85; 
P = 0.059) (Frye et al. 2015)

Yes Not included No
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Table 1  (continued)

Gene* Drug-class Use in bipolar disorder Trial on BD population CPIC level of evidence FDA label

EPHX1 Carbamazepine Carriers of the SCN1A IVS5-91GA 
variant or of EPHX1 c.337TC vari‑
ant presented significantly lower 
levels of plasma CBZ compared 
to carriers of the common alleles 
(0.71 ± 0.28 vs 1.11 ± 0.69 μgmL 
per mgKg for SCN1A IVS5-91 
AA vs GG and 0.76 ± 0.16 vs 
0.94 ± 0.49 μgmL per mgKg for 
EPHX1 c.337 CC vs TT; P0.05 for 
both) (Daci et al. 2015)

No D No

HLA-A Carbamazepine Due to “Greater risk of carbamaz‑
epine-induced SJS/TEN” by 
CPIC, proceed with caution in 
HLA-B*15:02 negative subjects, 
depending on HLA-A*31:01 geno‑
type; there may be an average risk 
in negative vs. Higher risk in posi‑
tive alleles (Phillips et al. 2018)

No A Actionable

HTR2A Antidepressants A meta-analysis found association of 
greater antidepressant response 
in major depressive disorder, for 
the dominant models of rs6313 
5HTR2A-T > C polymorphism 
(OR = 1.62; 95% CI 1.21–2.18; 
P = 0.008) and rs7997012G > A 
(OR = 1.92; 95% CI 1.02–3.61; 
P = 0.044) (Lin et al. 2014)

No D No

HTR2C Clozapine, Olanzapine, Risperidone A meta-analysis found significant 
association betwen the C allele 
of the HTR2C rs1414334:C > G 
polymorphism (OR = 2.44; 95%CI 
[1.48, 4.00]; P = 0.0004; I2 = 0), the 
HTR2C -697 G/C polymorphism 
(OR = 1.54; 95%CI [0.99, 2.40]; 
P = 0.05; I2 = 0), and olanzapine/
clozapine/risperidone-induced 
metabolic syndrome (Ma et al. 
2014)

No D No

OPRM1 Naltrexone Several trials have found an 
association between the A118G 
rs1799971 polymorphism and 
naltrexone response (Patriquin 
et al. 2015), review

No C/D No

ABCB1 Antidepressants Multiple genetic variants have 
been explored. Mixed evidence 
of association with less dose 
for remission, response, time to 
remission and remission in treat‑
ment of unipolar depression with 
antidepressants. The majority of 
evidence found associations with 
side effects and tolerability. (For a 
comprehensive review see (Bruckl 
and Uhr 2016)

No A/B No

COMT SSRIs Significant association between 
rs13306278 and remission 
(P = 0.038) in 1914 depressed 
patients from STAR*D genotyped 
for COMT (Ji et al. 2012)

No C No
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studies, especially regarding the AIM risk warrant fur-
ther exploration.

CYP2C19
Highly polymorphic-but significantly less than 
CYP2D6, CYP2C19 is mainly involved in the metabo-
lism of tricyclic and selective serotonin reuptake inhibi-
tors (SSRI) antidepressants, and benzodiazepines. Its 
genotype status influences the concentrations of ami-
triptyline and imipramine, and precautions are sug-
gested for poor metabolizers (Hicks et al. 2015, 2017). 
Citalopram, escitalopram and sertraline show higher 
serum concentrations in CYP2C19 poor metabolizers, 
however, in contrast with the above, the wide therapeu-
tic window of these drugs suggest that their effects may 
be more difficult to simply categorize by their meta-
bolic phenotype (Spina and de Leon 2015). Nonethe-
less, a recent study by Jukic et al. (Jukic et al. 2018) in 
more than two-thousand Europeans with multiple psy-
chiatric diagnosis, genotyped for CYP2C19 and medi-
cated with escitalopram, showed that both poor and 
ultra-rapid CYP2C19 metabolizers predicted greater 
switching from escitalopram to another antidepressant. 
In this same study, CYP2C19 poor metabolizers showed 
greater odds of having lower than threshold therapeu-
tic levels compared to extensive metabolizers; while 
this makes sense for ultra-rapid metabolizers, this is 
counterintuitive to poor metabolizer pharmacokinetics 
and may represent reduced treatment adherence (Jukic 
et  al. 2018). In contrast, Fabbri and colleagues (Fab-
bri et al. 2018) found in a meta-analysis that CYP2C19 
poor-metabolizers had higher side-effects compared 
to extensive metabolizers at weeks 2–4, however, also 

showed higher symptom improvement and remission 
in major depression when treated with citalopram or 
escitalopram. A 10-year retrospective cohort found 
that CYP2C19 poor metabolizers were more frequently 
observed in bipolar (9.8%) vs. unipolar subjects (0.6%, 
p = 0.003) (Veldic et  al. 2019). The apparent impact of 
CYP2C19 genotype in treatment response to citalo-
pram and escitalopram in depression, together with the 
observations of differences in CYP2C19 pharmacoge-
netics of bipolar depressed patients, warrants further 
exploration.

CYP2C9
CYP2C9 shows similar polymorphic variation to 
CYP2C19, but its role in the biotransformation of psy-
chotropic drugs is minor (Spina and de Leon 2015). Of 
relevance, the secondary role it has in adult valproate 
metabolism seems to become clinically crucial in chil-
dren, where it is responsible for most of this drug’s 
metabolism. Thus, its genotyping is recommended 
by some experts in this population (Monostory et  al. 
2019). CYP2C9 also modifies fluoxetine’s CYP2D6 
metabolism but with an unknown clinical impact 
(Llerena et al. 2004).

Other pharmacokinetic genes such as ABCB1 and 
UGT1A4 are mentioned in Table 1.

Ethnic, environmental and drug–drug interaction 
variables also provide an enormous source of variabil-
ity to the final metabolic phenotype expressed by the 
patient. Thus, bioinformatic tools based on systems 
biology will likely be needed in order to generate more 
intuitive models and clinical decision tools, based on 
pharmacokinetic PGT (McGraw et al. 2018).

Table 1  (continued)

Gene* Drug-class Use in bipolar disorder Trial on BD population CPIC level of evidence FDA label

CYP3A5 Alprazolam In a study of 19 healthy volunteers, 
CYP3A5 non-expressors had a 
lower alprazolam clearance com‑
pared carriers of the CYP3A5*1/*1 
and CYP3A5*1/*3 alleles (Park 
et al. 2006)

No C No

UGT1A4 Lamotrigine A meta-analysis found no associa‑
tions between concentration to 
dose ratio (CDR) values and differ‑
ent polymorphisms of UGT1A4. 
The non-pediatric population 
showed a non-significant trend 
of association between UGT1A4 
142T > G WT and higher CDR (Kim 
and Kim 2019)

No D No

*The genetic variants genotyped in PGT for each gene are many times unknown, thus interpretation must be done with caution

**These recommendations follow the CPIC Guidelines
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Targeted candidate genes in pharmacodynamic 
drug response/adverse event
Pharmacodynamic pharmacogenetic candidate gene 
studies of most bipolar drug classes have been performed, 
with genetic variants selected mechanistically from neu-
rotransmission, gene transcription, neuroplasticity, 
intracellular messenger cascades, and other pathways. 
However, our drug mechanism of action understanding 
is incomplete and limits hypothesis-driven design of can-
didate gene studies and their interpretation; moreover, 
current PGT may potentiate the intrinsic risk for false 
positive discoveries (Farrell et al. 2015). Nonetheless, we 
discuss the findings from such candidate gene studies so 
that clinicians who are faced with PGT DST, understand 
how the genetic variants included in these platforms 
were selected and why they should be careful with their 
interpretation.

Lithium
Lithium is the gold-standard mood stabilizing agent, with 
an extensive clinical evidence database for acute mania, 
bipolar depression, maintenance treatment (Bauer and 
Gitlin 2016), and suicidality prevention (Cipriani et  al. 
2013; Song et al. 2017). Clinical markers of response sug-
gest that distinct patient groups may be more responsive 
to lithium (Grof et al. 1993; Post et al. 2016) suggesting a 
possible familial trait suggestive of genetic transmission 
(Grof et al. 1993, 2002, 2009). Lithium has been the most 
extensively studied of BD medications at the pharmaco-
genetic level and comprehensive reviews are available 
covering this topic (Alda 2015; Pisanu et al. 2016; Budde 
et  al. 2017; Pickard 2017; Serretti 2017; Pisanu et  al. 
2018b).

Lithium mechanism of action involves multiple molec-
ular mechanisms (Li et al. 2012). Thus, pharmacogenomic 
studies based on candidate genes have focused in genes 
implicated in many of these pathways. Neurotransmis-
sion genes for instance, largely based in monoamines—
many of which are included in PGT—did not prompt 
any sufficiently robust associations of lithium treatment 
response (Budde et  al. 2017; Pisanu et  al. 2018b). Also 
included in PGT, the genetic single nucleotide polymor-
phism (SNP) rs6265, Val66Met, of BDNF, largely used to 
study neuroplasticity, showed mixed results (Michelon 
et  al. 2006; Dmitrzak-Weglarz et  al. 2008, Drago et  al. 
2010; Wang et al. 2012). GSK-3β is inhibited by lithium 
and, it is involved in neurogenesis, plasticity, and tran-
scription through the Wnt canonical signaling pathway 
(Valvezan and Klein 2012). However, no robust evidence 
was found or replicated for GSK3B genetic variants 
(Michelon et al. 2006; Szczepankiewicz et al. 2006; Sathur 
Raghuraman et  al. 2018); nor in other variants involved 

in genetic transcription, neuronal survival and plastic-
ity, as SNPs in the CREB family (Mamdani et  al. 2008) 
in association to lithium treatment response. Similarly, 
other variants related to inositol metabolism, involved in 
lithium’s mechanism of action, did not resulted in strong 
replicable results (Pisanu et al. 2016).

Lithium renal adverse events are an important though 
rare concern in BD treatment (Shine et al. 2015). To bet-
ter inform lithium safety, a pharmacogenetic study of 
urinary concentration phenotypes were assessed in a 
group of 78 BD patients receiving lithium for a mean of 
16 ± 9 years; in association with the GSK3B-50 C/T poly-
morphism, the authors found a statistically significant, 
though very modest association, not subjected to mul-
tiple testing correction, between the C-allele and kidney 
function, encouraging larger studies to better ascertain 
the potential role of GSK3B in informing lithium renal 
toxicity (Rybakowski et al. 2013).

Valproic acid
Valproic acid (VPA) is recommended in the treatment 
of bipolar mania, depression and maintenance (Grunze 
et  al. 2013, 2018; Yatham et  al. 2018). Sodium channel 
blockade is one of VPA’s proposed mechanisms of action. 
Genetic variation in the SCN family genes, specifically 
SCN2A, which encodes of the sodium channel (Haug 
et  al. 2001), has shown mixed evidence of association 
with VPA response (Haerian et  al. 2013; Li et  al. 2016); 
it is important to reference that these studies were con-
ducted in epilepsy patients and anticonvulsant and mood 
stabilization therapeutic mechanisms of action may dif-
fer. Included in PGT, CACNA1C and other calcium chan-
nel coding genes have been tested for VPA efficacy, but 
they prompted negative results (Lv et  al. 2015), again, 
these studies were conducted in epilepsy patients. In 
bipolar populations, VPA response showed a positive 
association with XBP1-116 C/G polymorphism, but rep-
lication is needed (Kim et al. 2009). GNB3 variants have 
also been associated with metabolic abnormalities in 
cross-over (Chang et  al. 2010) and prospective studies 
(Chen et al. 2017) of BD patients treated with VPA.

Carbamazepine and lamotrigine
Although rare, serious dermatologic adverse events are 
observed with antiepileptic mood-stabilizers. Carriers of 
the HLA-B*15:02 allele in Asian population, specifically 
of Han Chinese descent, are at risk of developing severe 
hypersensitivity reactions in association with carbamaz-
epine, lamotrigine, and phenytoin treatment (Bloch et al. 
2014); moreover, the FDA recommends PGT in patients 
of Asian ancestry for this specific variation before initi-
ating carbamazepine treatment (Drozda et al. 2018). The 
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generalizability to other anticonvulsants or other racial 
ethnic groups in BD has not been investigated.

Atypical antipsychotics
Weight-gain and other metabolic dysfunction is a major 
concern in BD treatment, especially regarding second-
generation antipsychotics (SGAs) and mood-stabilizers. 
A recent meta-analysis of the genetic risk of anti-psy-
chotics, predominantly SGAs-induced weight gain, 
explored 38 SNPS from 20 different genes in 6 independ-
ent samples (N = 6770) with predominant Caucasian 
and Asian ancestry (Zhang et al. 2016). 13 SNPs from 9 
genes, namely ADRA2A, ADRB3, BDNF, DRD2, GNB3, 
HTR2C, INSIG2, MC4R and SNAP25 showed statistically 
significant associations with antipsychotic-related weight 
gain (P-values < 0.05–0.001), while SNPs in ADRA2A, 
DRD2, HTR2C, and MC4R had the largest effect sizes 
(Hedges’ g’s = 0.30–0.80, ORs = 1.47–1.96 (Zhang et  al. 
2016). Important limitations to this meta-analysis include 
important heterogeneity, from selected antipsychotic 
agents, previous exposure to antipsychotics, time of 
exposure; also, the lack of multiple testing analysis. As 
with most genetic association studies, further functional 
analysis of these SNPs is needed before reaching a com-
plete understanding of their actual biological impact on 
the mentioned genes or else. ADR2A, BDNF, and DRD2 
are included in most PGT commercial assays, however, 
the variants included in these tools are most of the time 
proprietary and thus it is unknown whether they test for 
the SNPs found in Zhang et  al.’s study. Other efforts in 
understanding weight gain, specifically in BD, secondary 
to SGAs or mood stabilizers in 486 Systematic Treatment 
Enhancement Program for Bipolar Disorder subjects that 
did not identify significant candidate genes of weight gain 
liability (Creta et al. 2015).

Antidepressants
Clinical recommendations have been developed to 
address antidepressant use in bipolar depression hope-
fully reducing “the striking incongruity” between the 
widespread use of antidepressants in BD and the lim-
ited evidence that supports their use (Pacchiarotti et  al. 
2013). One concern of antidepressant use in BD is risk 
of AIM. A meta-analysis of controlled trials of antide-
pressants in bipolar depression reported a 12.5% rate of 
treatment emergent mania (Tondo et  al. 2010). While 
there are clinical factors identified with AIM (Frye et al. 
2006, Goldberg et  al. 2007), there is increasing investi-
gation of genetic markers in this drug related adverse 
event. The most studied genetic association for AIM 
has involved the serotonin transporter gene (SLC6A4), 
that encodes the protein in charge of serotonin syn-
aptic reuptake, and the variants involved in its genetic 

expression. There are predominantly 2 well-known 
polymorphisms: (5-HTTLPR) with long (L) and short 
(S) allele variants and a second intron variable number 
of tandem repeats (VNTR). 5-HTTLPR association to 
AIM has been studied with meta-analysis showing con-
flicting information (Daray et  al. 2010; Biernacka et  al. 
2012). A more recent meta-analysis combining the Mayo 
Clinic Bipolar Biobank with 5 prior AIM studies, pro-
vided marginal evidence of association for the S-allele 
of 5-HTTLPR with AIM (p = 0.059). On the other hand, 
haplotype analysis including SNP rs25531 (A/G), and the 
intron 2 VNTR (9, 10, 12 repeat alleles) showed that the 
L-A-10 haplotype was associated with a reduced risk of 
AIM (p = 0.012) (Frye et  al. 2015). SLC6A4 variation is 
included in PGT commercial testing, however, before 
using it to inform AD prescription in BD, further explo-
ration of the relationship between SLC6A4 variation and 
risk of AIM is needed. For instance, intron 2 VNTR and 
other SNPs with an impact in SLC6A4 expression, need 
to be employed in risk calculation, rather than focusing 
exclusively on the promoter long/short variant (Frye et al. 
2015).

GWAS of drug response/adverse event
GWAS employ an agnostic or untargeted approach 
and do not rely on mechanistic hypothesis. They have 
prompted the most promising results regarding genetic 
markers of treatment response in BD.

Lithium
Most pharmacogenetic GWAS of BD have largely focused 
in Lithium. Initial efforts showed promising SNPs of 
risk, but they did not reach genome-wide significance 
of p ≤ 5 × 10−8 (Perlis et al. 2009; Squassina et al. 2011). 
The first genome-wide significant finding associated with 
lithium response, assessed by retrospective Alda scales, 
was achieved with a relatively small population (N = 294) 
of Han Chinese BD-I patients, and was replicated in an 
independent population (N = 100) (Chen et  al. 2014). 
A robust association was observed for rs17026688 
(p = 5.5 × 10−37) and rs17026651 (p = 2.52 × 10−37), vari-
ants in strong linkage disequilibrium (LD) in the GADL1 
gene, and replicated (p = 9.19 × 10−15 for each SNP). 
Moreover, they showed a 93% sensitivity in predicting 
lithium response (Chen et  al. 2014). GADL1 encodes a 
protein similar to GABA metabolism enzymes, suggest-
ing biological plausibility of this finding. Furthermore, 
the effect-size of the association for the T-allele carri-
ers and lithium response was enormous: 88.5 [95% con-
fidence interval 41.4–198.0] (Chen et  al. 2014). A study 
of this variant in a candidate gene study of Han Chinese 
patients additionally suggested a significant associa-
tion with less recurrence and thus as a potential marker 
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of lithium maintenance treatment (Chen et  al. 2016). 
GADL1 SNPs were not further replicated outside of this 
initial work (Hou et al. 2014; Ikeda et al. 2014; Cruceanu 
et al. 2015; Kotambail et al. 2015), however, Asian ances-
try replications included both Han Chinese and Japanese 
populations (Hou et al. 2014) and Japanese-only popula-
tions (Ikeda et al. 2014). Moreover, the phenotype in the 
Chen et al., original study was narrower than further rep-
lications (Chen et al. 2014). An analysis of gene expres-
sion found no activity of GADL1 in post mortem brain 
studies from individuals with BD (Birnbaum et al. 2014). 
The authors of this expression analysis hypothesized that, 
given the greater expression of GADL1 in the kidney and 
its involvement in renal function (Liu et al. 2012), GADL1 
association to treatment response may be rather due to a 
renal function phenotype (Birnbaum et  al. 2014).This is 
an important lesson in pharmacogenetics, showing the 
difficulty in interpreting and replicating even the most 
promising pharmacogenetic variants. Given its original 
and strong association with lithium response but fur-
ther limitations in biological interpretation and replica-
tion, GADL1 variants should be regarded with caution as 
potential pharmacogenetic markers of BD.

The largest pharmacogenetic consortium of lithium, 
the International Consortium on Lithium Genetics (Con-
LiGen), performed a GWAS in 2563 “bipolar spectrum” 
patients—mainly bipolar 1—from 22 participating sites, 
and showed a genome-wide significant association with 
a group of SNPs in a single region of chromosome 21 
(Hou et  al. 2016). This region has two genes that code 
non-coding RNAs, which in turn could be involved in 
gene expression (Hou et  al. 2016), however, the actual 
functional effect of these variants is yet to be fully inves-
tigated. Interestingly, a prospective sample (N = 73) 
showed association with this region and lower relapse 
rates in 2-year follow-up (Hou et  al. 2016). Replica-
tion, biological and clinical interpretation of this finding 
remains to be elucidated. Similar findings were found by 
the same group, showing an inverse relationship between 
lithium response and schizophrenia polygenic risk 
(Amare et al. 2018). Moreover, a cross-trait meta-GWAS 
found 15 genetic variants that may have overlapping 
effects on lithium treatment response and susceptibil-
ity to SCZ; bioinformatic analysis of these variants sug-
gested the involvement of the HLA antigen complex 
and inflammatory cytokines (Amare et  al. 2018). HLA 
members are included in some commercial PGT, how-
ever, their role in establishing lithium response is not yet 
validated. A GWAS performed in bipolar 1, 2, not speci-
fied and schizoaffective disorder, patients from Sweden 
and the United Kingdom with subjective (N = 2698) and 
objective (N = 1176) measures of treatment response, 
showed no genome wide significant results comparing 

lithium response between BD patients. However, when 
compared to healthy controls, a variant from imputation, 
prompted a validated genome-wide significant result in 
rs116323614 (p = 2.74 × 10−8), located in SESTD1. The 
later gene seems to be involved in phospholipid syn-
thesis, which are potential lithium targets (Song et  al. 
2016). The biological and clinical relevance of this asso-
ciation remains to be determined. Not only should they 
be regarded with caution in PGT but, to our knowledge, 
none of these variants are available for PGT commercials 
assays to date.

Clozapine
Clozapine is a SGA used in treatment resistant BD 
patients (Frye et al. 1998). In spite of its evident clinical 
benefit, clozapine use is limited due to clozapine-induced 
agranulocytosis/granulocytopenia (CIAG). Significant 
pharmacogenetic studied have explored this phenom-
enon, as recently reviewed by Numata et al. (2018). Sev-
eral GWAS have been conducted, an initial effort by 
Goldstein et  al., on 161 CIAG cases and 1196 controls 
of European descent, found genome-wide associations 
for variants in HLA-DQB1 and in HLA-B (Goldstein 
et al. 2014). In meta-analysis, only the HLA-DQB1 vari-
ant showed a nominally significant independent replica-
tion for a variant in HLA-DQB1 (OR = 15.6, P = 0.015, 
positive predictive value = 35.1), while a novel vari-
ant in rs149104283, an intronic transcript of SLCO1B3 
and SLCO1B7, was associated with CIAG (OR = 4.32, 
P = 1.79 × 10−8) (Legge et  al. 2017), but was not repli-
cated in a Japanese sample (Saito et al. 2017). A GWAS 
in Japanese samples including 50 cases of CIAG vs. 
2905 controls, identified rs1800625 in the HLA region, 
particularly an association of HLA-B*59:01 with CIAG 
(Saito et al. 2016).

Dermatologic severe reactions to mood stabilizers 
and CIAG genetic risk, are for now better understood 
in Asian ancestries, thus limiting the use of PGT to this 
population.

No prospective trials have followed PGT and safety/
tolerability phenotypes. Interestingly, a retrospective sur-
vey associating efficacy and tolerability in MD and BD 
patients with PGT, observed accordance between side 
effect tolerability phenotype and the 15 evaluated genes 
(70.6%), however, this latter association was not signifi-
cant (p = 0.71) (Tonozzi et al. 2018).

Potential role of DST that incorporate multiple 
genotype/phenotype drug recommendations
A number of commercially available platforms have 
been developed that rapidly assess pharmacokinetic and 
pharmacodynamic variation and develop a proprietary 
DST or algorithm to individualize treatment selection. 
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A narrative review by Bousman and Hopwood (Bous-
man and Hopwood 2016) found 22 commercial compa-
nies offering PGT to five countries most prevalent in the 
USA (n = 13), followed by Australia and Canada (both 
n = 3). The majority of these platforms have focused on 
antidepressants in major depressive disorder primarily 
and antipsychotics in schizophrenia secondarily. Many 
of the pharmacogenetics candidate genes identified in 
response or adverse studies are commercially available as 
part of a DST. The extent of existing literature or clini-
cal evidence base reviewed to assign a specific genotype 
a phenotypic pharmacokinetic (i.e., poor metabolizer) or 
pharmacodynamic (i.e., short form vs long form seroto-
nin transporter) classification for each drug of the DST 
is proprietary. There is early work to suggest that differ-
ent commercial products vary substantially, both in labo-
ratory analysis of genotype and subsequent phenotypic 
classification (Bousman and Dunlop 2018).

There are early uncontrolled observations investigat-
ing the efficacy of PGT. Tonnozi et  al. (2018) reported 
PGT of 15 genes (specific variants not reported) in 352 
patients with major depression and BD. They reported 
that more than 60% of the self-reported retrospective 
treatment response and phenotype outcomes agreed 
(p = 0.001) and more than 70% of the reported side effect 
tolerability and phenotype outcome agreed, but this lat-
ter association was not significant. The retrospective 
nature of this association is a clear limitation. Prospective 
studies of DST have been compared to treatment as usual 
(TAU).

The Genomics Used to Improve Depression Deci-
sions (GUIDED) trial is the largest study to date that 
randomized 1167 patients with major depression TAU 
vs genotype guided care. The primary outcome meas-
ure, baseline to endpoint in the Hamilton Depression 
Rating Scale, showed no significant difference between 
treatment groups, but secondary outcomes of treat-
ment response and remission rates were statistically sig-
nificant higher in in guided care vs TAU, though it is not 
clear if multiple testing was accounted for (Greden et al. 
2019). Furthermore, patients randomized to guided care 
who switched from non-concordant treatment to con-
cordant treatment, defined as agreement between DST 
recommendation and actual treatment selected, in com-
parison to those who stayed on non-concordant treat-
ment, achieved a significant reduction in depressive 
symptoms and higher rates of response and remission. 
A recent meta-analysis of 5 studies, including Greden 
et al. (2019), reported that patients randomized to geno-
type guided care (n = 887) were 1.71 (95% CI 1.17–2.48, 
p = 0.005) times more likely to achieve remission than 
those patients randomized to TAU (Bousman et al. 2019). 
While the field continues to investigate these DST and 

attempt consensus as to their clinical utility, none of these 
studies have systematically investigated antidepressants 
or antipsychotics in BD. A small retrospective study of 30 
BD-I and BD-II patients reported a similar observation to 
Greden et al. (2019) that as treatment concordance rates 
increased (i.e., genotype guided recommendation and 
actual treatment selected) from 13% at baseline and 40% 
at 3-month follow up, symptom severity as measured 
by the Clinical Global Impression—severity measure 
decreased (Ielmini et  al. 2018). The bipolar pharamaco-
poiea would clearly advance where clinical treatment 
could be more individualized in reducing the risk:benefit 
ratio of antidepressants (i.e., AIM: depression efficacy) 
and atypical antipsychotics (tardive dyskinesia or cardio-
metabolics: depression efficacy).

There are two important examples of commissions 
dedicated to the evaluation of PGT in all medicine spe-
cialties. The Evaluation of Genomic Applications in Prac-
tice and Prevention (EGAPP) working group, part of the 
Centers of Disease Control and Prevention, developed a 
systematic process for evaluating genetic and PGT; they 
reviewed the utility of CYP450 PGT in major depres-
sion SSRI prescription more than 10 years ago and con-
cluded, based on criteria of analytical validity, clinical 
validity, clinical usefulness, among other ethical/social 
aspects, that more research was needed before the ben-
efit of PGT could be determined (E.o.G.A.i.P.a.P.E.W. 
Evaluation of Genomic Applications in Practice and 
Prevention (EGAPP) Working Group 2007). Concern 
was raised that important evidence from smaller phar-
macogenetic trials and meta-analysis were not included 
that may have excluded important safety considerations 
related to CYP2D6 genotyping (Mrazek 2010). Commis-
sioned by the National Health Service, the UK Genetic 
Testing Network (UKGTN) uses similar-to EGAPP 
but more extended criteria, to determine the benefit of 
PGT (UKGTN 2019b). Unfortunately, only dementia 
PGT is part of the psychiatry-related reports generated 
by this organization (UKGTN 2019a, b). However, using 
UKGTN modified criteria, Bousman and Hopwood 
(Bousman and Hopwood 2016) developed levels of evi-
dence for pharmacogenetic testing variants available in 
commercial tests. Related to antidepressant therapy, a 
number of important development considerations were 
reviewed including: (1) 53% of the 46 tested genes had 
only preliminary or low supporting evidence (20% met 
criteria for the highest level), (2) only 60% of CYP2D6 
and CYP2C19 metabolism-related variants were included 
in the commercial tests, (3) SNPs included per gene were 
not always reported in the commercial test, (4) limited 
availability of drug–drug and drug–gene interaction 
tools, and (5) not accounting for additional environmen-
tal effects and ancestry.
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PGT also needs to be cost-effective and studies on 
willingness-to-pay show patient’s preference for PGT, in 
order to avoid trial-and-error prescriptions, medication 
changes and adverse events, is significant (Herbild et al. 
2008, 2009). Early first investigations of PGT in mood 
and anxiety disorders appears promising. In a health 
claims dataset propensity-score, matched 6-month, 
case–control analysis, individuals with a mood/anxiety 
disorder (14.8% bipolar) who received PGT (n = 817), in 
comparison to similar mood/anxiety disorder individu-
als who did not receive PGT testing (n = 2745), recorded 
40% fewer emergency room visits and 58% fewer inpa-
tient all cause hospitalizations (Perlis et al. 2018). While 
overall 6-month number of psychotropic medications did 
not differ, overall costs were estimated to be nearly $2000 
lower in the PGT group.

Conclusions
DST based on the pharmacogenomics evidence base for 
BD are significantly underdeveloped in comparison to 
antidepressants for major depressive disorder and antip-
sychotics for schizophrenia. PGT commercial assays pro-
vide a few robust clinical applications for safety concerns 
raised by BD treatment, especially in cutaneous side 
effects of mood-stabilizers in Asian populations. Other 
potential uses in BD are mostly limited to metabolic phe-
notype associated variants. However, in comparison to 
genetic variation associated with adverse event or quanti-
fiable biological process (i.e., rash, QTc prolongation), the 
bar to establish pharmacogenomic efficacy is significantly 
higher and to date, the evidence base for treatment rec-
ommendations is significantly less (Ahmed et al. 2018). It 
is important to note that most of these commercial assays 
vary in content—which may be not fully disclosed—of 
the genetic tests provided. Moreover, they may provide 
limited interpretation tools.

It is possible, but yet not investigated, that pharmaco-
genetic phenotyping in BD may differ by disease phase 
(e.g., mania, depression, maintenance), clinical com-
ponents or subphenotypes (e.g., rapid cycling, obesity, 
binge eating), presence/absence and composition of 
multimodal drug therapy, environmental influences that 
magnify or mitigate genetic variation, and overall illness 
staging (at-risk, first episode, chronic illness with loss of 
euthymia and functional baseline).

The complexity of BD genetics and, the heterogeneity 
in BD drug-related phenotypes, are important consid-
erations for the design and interpretation of BD PGT. 
As BD genetic risk is better understood by additional 
GWAS and functional genomic studies, the underlying 
neurobiology of the illness will provide better guidance 
for genomic testing of pharmacotherapy interventions. 
Furthermore, risk calculating tools would need to go 

beyond PGT, and include other important markers of 
risk, namely clinical risk factors, neuroimaging findings, 
among others; to better achieve precision medicine in BD 
(Perlis 2016).

The fast growing consortiums and GWAS studies on 
lithium response seem one of the most promising ave-
nues for BD pharmacogenomics. Variants in GADL1 and 
genes coding non-coding RNAs have been associated 
with this phenotype. However, these studies have thus 
far taught us important lessons, such as the one on Chen 
et  al., GADL1 study. In spite of showing genome-wide 
associations and large effect sizes, further investigation 
on GADL1 did not support its association with lithium 
response. Moreover, functional studies seem to suggest 
that the GADL1 SNPs associated with lithium response, 
do not have an effect on its genetic expression at the 
brain level. This is a remarkable reminder of the caution 
needed when interpreting pharmacogenetic studies, a 
precaution that is even more crucial before PGT reaches 
clinical implementation. It is also important to bear in 
mind that genetics are only a step in the complex “omic” 
levels that may explain the heritability of a given pheno-
type. Thus, PGT in BD need to be complemented with 
epigenetics, gene expression, proteomic, etc., and tested 
in cellular models such as the ones, for example, provided 
by induced pluripotent stem cells. Relevant examples 
of genomic tool integration in BD are emerging. Pisanu 
et al. (2018a) integrated GWAS lithium response findings 
in cellular lines, measured their effect on gene expression 
and, integrating these technologies, they found a poten-
tial target in a zinc-finger protein coding gene. Induced 
pluripotent stem cell lines have revealed hyperexcitability 
phenotypes in BD neurons that are reversed in lithium 
response patients (Mertens et al. 2015), underscored the 
importance of GSK3-β and other Wnt signaling members 
in the BD neuronal cell-lines (Madison et al. 2015), and 
elicited a promising new “pathway of lithium response”, 
that governs the phosphorylation of CRMP2, which 
seems to be indirectly modulating GSK3-β (Tobe et  al. 
2017). The implementation of in silico and machine-
learning technologies, will also be crucial in integrating 
these findings to design intuitive models that help us 
mimic the biological complexity of genetic–phenotypic 
interactions.

The clinical applicability of PGT in psychiatry is in 
its infancy (Stern et  al. 2018) and is far from reaching 
the robust impact it has for instance, in other medical 
disciplines such as oncology. Nonetheless, promising 
findings in pharmacogenomic markers of efficacy are 
discovered with increasing frequency, especially for 
lithium. Over the last 10  years, pharmacogenetics and 
other pharmacogenomic technologies have evolved sig-
nificantly, promising results of remarkable relevance 
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in neuroscience, pharmacology and biology. Their ulti-
mate goal of generating precision medicine in BD, may 
be a reality not so far in our future.
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